Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest
نویسندگان
چکیده
Measurements of ozone, sensible heat, and latent heat fluxes and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan from June 27 to September 28, 2002. These measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with maximum values reaching 100 μmol m−2 h−1 at midday and minimums at or near zero at night. Mean daytime canopy conductance was 0.5 mol m−2 s−1. During daytime, non-stomatal ozone conductance accounted for as much as 66% of canopy conductance, with the non-stomatal sink representing 63% of the ozone flux. Stomatal conductance showed expected patterns of behaviour with respect to photosynthetic photon flux density (PPFD) and vapour pressure defecit (VPD). Non-stomatal conductance for ozone increased monotonically with increasing PPFD, increased with temperature (T) before falling off again at high T, and behaved similarly for VPD. Day-time non-stomatal ozone sinks are large and vary with time and environmental drivers, particularly PPFD and T. This information is crucial to deriving mechanistic models that can simulate ozone uptake by different vegetation types.
منابع مشابه
Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence from long-term continuous measurements
Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal depositions. The portion of ozone taken up through stomata has an oxidative effect causing damage.We used amultiyear dataset to assess ozone deposition to a ponderosa pine plantation near Blodgett Forest, Georgetown, California. Environmental parameters, water and ozone concentrations and fluxes were measured co...
متن کاملEnvironmental controls on sap flow in a northern hardwood forest.
Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in asses...
متن کاملOzone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests
Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the pot...
متن کاملExposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide.
With rising concentrations of both atmospheric carbon dioxide (CO(2)) and tropospheric ozone (O(3)), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO(2) and O(3), singly and in combination, on the primary short-term stomatal response to CO(2) co...
متن کاملStomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment.
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies an...
متن کامل